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ABSTRACT 

In the first part of this dissertation, a novel medium access protocol for the Internet of Thing 

(IoT) networks is introduced. The Internet of things (IoT), which is the network of physical devices 

embedded with sensors, actuators, and connectivity, is being accelerated into the mainstream by 

the emergence of 5G wireless networking. This work presents an uncoordinated non-orthogonal 

random-access protocol, which is an enhancement to the recently introduced slotted ALOHA- 

NOMA (SAN) protocol that provides high throughput, while being matched to the low complexity 

requirements and the sporadic traffic pattern of IoT devices. Under ideal conditions it has been 

shown that slotted ALOHA-NOMA (SAN), using power- domain orthogonality, can significantly 

increase the throughput using SIC (Successive Interference Cancellation) to enable correct 

reception of multiple simultaneous transmitted signals. For this ideal performance, the enhanced 

SAN receiver adaptively learns the number of active devices (which is not known a priori) using 

a form of multi-hypothesis testing. For small numbers of simultaneous transmissions, it is shown 

that there can be substantial throughput gain of 5.5 dB relative to slotted ALOHA (SA) for 0.07 

probability of transmission and up to 3 active transmitters. 

As a further enhancement to SAN protocol, the SAN with beamforming (BF-SAN) 

protocol was proposed. The BF-SAN protocol uses beamforming to significantly improve the 

throughput to 1.31 compared with 0.36 in conventional slotted ALOHA when 6 active IoT devices 

can be successfully separated using 2×2 MIMO and a SIC (Successive Interference Cancellation) 

receiver with 3 optimum power levels. The simulation results further show that the proposed 

protocol achieves higher throughput than SAN with a lower average channel access delay.  
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In the second part of this dissertation a novel Machine Learning (ML) approach was 

applied for proactive mobility management in 5G Virtual Cell (VC) wireless networks. Providing 

seamless mobility and a uniform user experience, independent of location, is an important 

challenge for 5G wireless networks. The combination of Coordinated Multipoint (CoMP) 

networks and Virtual- Cells (VCs) are expected to play an important role in achieving high 

throughput independent of the mobile’s location by mitigating inter-cell interference and 

enhancing the cell-edge user throughput. User- specific VCs will distinguish the physical cell from 

a broader area where the user can roam without the need for handoff, and may communicate with 

any Base Station (BS) in the VC area. However, this requires rapid decision making for the 

formation of VCs. In this work, a novel algorithm based on a form of Recurrent Neural Networks 

(RNNs) called Gated Recurrent Units (GRUs) is used for predicting the triggering condition for 

forming VCs via enabling Coordinated Multipoint (CoMP) transmission. Simulation results show 

that based on the sequences of Received Signal Strength (RSS) values of different mobile nodes 

used for training the RNN, the future RSS values from the closest three BSs can be accurately 

predicted using GRU, which is then used for making proactive decisions on enabling CoMP 

transmission and forming VCs.  

Finally, the work in the last part of this dissertation was directed towards applying Bayesian 

games for cell selection / user association in 5G Heterogenous networks to achieve the 5G goal of 

low latency communication. Expanding the cellular ecosystem to support an immense number of 

connected devices and creating a platform that accommodates a wide range of emerging services 

of different traffic types and Quality of Service (QoS) metrics are among the 5G’s headline 

features. One of the key 5G performance metrics is ultra-low latency to enable new delay-sensitive 

use cases. Some network architectural amendments are proposed to achieve the 5G ultra-low 
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 ix 

latency objective. With these paradigm shifts in system architecture, it is of cardinal importance 

to rethink the cell selection / user association process to achieve substantial improvement in system 

performance over conventional maximum signal-to- interference plus noise ratio (Max-SINR) and 

Cell Range Expansion (CRE) algorithms employed in Long Term Evolution- Advanced (LTE-

Advanced). In this work, a novel Bayesian cell selection / user association algorithm, incorporating 

the access nodes capabilities and the user equipment (UE) traffic type, is proposed in order to 

maximize the probability of proper association and consequently enhance the system performance 

in terms of achieved latency. Simulation results show that Bayesian game approach attains the 5G 

low end-to-end latency target with a probability exceeding 80%  
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CHAPTER 1: INTRODUCTION 

Fifth Generation (5G) wireless networks are envisioned as a holistic system that supports 

a wide range of applications with challenging specifications. The applications which will be 

supported by the 5G cellular network are categorized, according to their requirements, into the 

following three main use cases, massive Machine-Type Communication (mMTC), enhanced 

Mobile Broadband (eMBB) and Low-Latency Communication (LLC). The mMTC use case is 

necessary for supporting the envisioned 5G Internet of Thing (IoT) scenarios, where a massive 

number of IoT devices with low complexity and limited power are connected over a shared 

wireless medium. Designing scalable medium access control (MAC) protocols that can meet the 

high throughput requirements and are compatible with low complexity and limited power 

specifications IoT devices is critical for mMTC. Also, to meet the high data rates and capacity 

requirements expected from eMBB, the concept of Virtual-Cell (VC) or “no cell” has been 

proposed as a key enabler for 5G new radio (NR) systems [1], [2]. In the Virtual-Cell concept a 

group of cooperating base-stations (BSs) is adaptively and dynamically formed so that the user 

can achieve a uniform Quality of Service (QoS) independent of its location in the network. Last, 

but certainly not least, one of the most challenging 5G objectives within the Low-Latency 

Communication (LLC) use-case is to meet the extremely low 5G latency requirement of 1 

millisecond for some applications.   

Notably, the infrastructure and technologies of the current 4G wireless networks will not 

be able to handle these requirements. Therefore, to meet the envisioned 5G objectives, it is 
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important to explore new technologies and paradigms for future 5G wireless networks. Next, the 

research areas investigated in this dissertation and a summary of our contributions are described.       

1.1. Massive Machine-Type Communication (mMTC) 

The rapid growth of both the number of connected devices and the data volume that is 

expected to be associated with Internet of Things (IoT) applications, has increased the popularity 

of Machine-to-Machine (M2M) type communication within the Fifth Generation (5G) wireless 

communication systems [3]. Hence, it is necessary to rethink the medium access control (MAC) 

protocol to match the massive amount of devices accessing the shared medium and the limited-

power and low complexity requirements of IoT devices. As illustrated in Figure 1.1, coordinated 

medium access protocols, such as time-division multiple access (TDMA), frequency-division 

multiple access (FDMA), or code-division multiple access (CDMA) are contention-free protocols 

via ensuring that resources are exclusively scheduled for each device. 

 
Figure 1.1. Illustration of coordinated medium access among multiple devices: time-division 
multiple access (TDMA), frequency-division multiple access (FDMA) and code-division multiple 
access (CDMA), where B is the total bandwidth and T is the total transmission time.  
 

 However, the capacity of these protocols is not scalable and cannot provide sufficient 

throughput to meet the demands for a massive number of IoT devices due to the empty slots and 

the scheduling overhead required for the connection establishment before each transmission.  
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Therefore, uncoordinated random access protocols have attracted lots of attention in the 

standards as a possible method for supporting a massive number of M2M communication of short 

packets with a low signaling overhead [4], [5].  

On the other hand, uncoordinated medium access protocols such as ALOHA and slotted 

ALOHA (SA) only perform well in small networks, and cannot provide sufficient throughput in 

networks with large numbers of IoT devices transmitting simultaneously over the shared medium 

due to collisions at the IoT gateway. The same issues exist in IEEE 802.11, which is based on 

carrier-sense multiple access with collision avoidance (CSMA/CA) where collisions can still 

happen due to the hidden and exposed terminal problems.  Moreover, CSMA/CA is not compatible 

with the limited-power requirements of IoT devices since it requires continuous channel 

monitoring.  

1.2. Enhanced Mobile Broadband (eMBB)  

The Fifth Generation (5G) of mobile networks using Millimeter Wave (mmWave) 

technology is anticipated to deliver a substantial increase in the rates of data traffic over the cellular 

network, as much as 10 Gbps compared to 100 Mbps in 4G networks [6]. For instance, such 

applications as streaming Ultra-High Definition (UHD) video, Augmented Reality (AR) and 

Virtual Reality (VR), which have emerged under the 5G Enhanced Mobile Broadband (eMBB) 

use case, require very high throughput rates everywhere even at the cell edges (i.e., providing a 

uniform user experience) [6]. 

 However, degradation in the throughput likely will occur, particularly in cellular systems 

with a frequency reuse of unity, as the user equipment (UE) moves towards the cell edge due to 

several factors such as the path loss and the interference from neighboring cells. This degradation 
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in the perceived throughput could greatly undermine the quality of a real- time applications that 

requires a very high throughput.   

Furthermore, in order to maintain the connectivity of a UE with the network, a handover 

(HO) process takes place by changing the association of the UE to another cell with a better signal 

quality. During the HO process, the UE might also experience a degradation in the quality of 

service as a result of the HO delay. Thus, providing seamless mobility and a reliable quality of 

service anywhere in the network for mobile users is an important challenge in 5G cellular 

networks.  

Many solutions have been proposed in the 3GPP standards, such as using self-organizing 

networks (SON) in order to enhance the cell-edge user throughput via mitigating the inter-cell 

interference. For instance, an Inter-Cell Interference Coordination (ICIC) technique [7] proposed 

in Long Term Evolution (LTE), Release 8, and the enhanced ICIC (eICIC) technique proposed [8] 

in LTE-Advanced (LTE-A), Releases 10 and 11, exploit the interference information exchanged 

between adjacent cells via the X2 backhaul interface to improve the cell edge user’s throughput 

by adaptively muting resources that cause strong interference and assigning different frequencies 

and powers for the cell edge users. On the other hand, these techniques can result of a degradation 

in the overall system throughput due to restricting the usage of radio resources in time and 

frequency.  

Coordinated multipoint (CoMP) transmission [9] is another proposed solution that is also 

based on cooperation among cells. However, unlike the previous techniques where the UE 

communicates with only one base station, CoMP can allow cell edge users to communicate with 

multiple BSs (forming a CoMP cooperating set) and hence improve the throughput of cell edge 
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users and the overall network. CoMP was first standardized in Long Term Evolution-Advanced 

(LTE-A), Releases 11 and 12. 

5G systems are envisioned to further leverage CoMP technology for providing a uniform 

user experience anywhere in the network. In contrast to the cell-centric approach used in traditional 

cellular networks with fixed cell coverage areas, a new “cellular” paradigm is emerging, which is 

a user-centric approach, where the UE is associated with multiple BSs and creates a Virtual Cell 

(VC) [10] that is adapted according to the mobility of UEs. For instance, using coordinated joint 

transmission-CoMP (JT-CoMP) formation of VCs in the downlink (DL) can help to attain a 

uniform user experience for mobile users via improving the throughput of cell-edge users and 

minimizing the number of hard handovers. The concept of a Virtual Cell is illustrated in Figure 

1.2. Virtual Cells break the traditional concept of cell boundaries, via coordinating the data 

transmission among multiple BSs to jointly serve the users and eliminate the interference from 

neighboring BSs. 

 
Figure 1.2. Evolution of a classic cellular wireless network to a virtual cell network.  
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1.3. Low Latency Communication (LLC) 

The Fifth-Generation (5G) networks are expected to support a broad domain of emerging 

services with various Quality of Service (QoS) requirements, i.e., from narrow-bandwidth, delay-

sensitive services to bandwidth-hungry, delay-tolerant services. To address these disparate 

services, several solutions have recently been proposed. For instance, Coordinated Multi-Point 

(CoMP) [11] is envisioned as one of the prominent 5G solutions by improving the service for cell 

edge users suffering from high levels of interference particularly in multitier networks. CoMP has 

been standardized in LTE-Advanced (Release.11) [12].  

Moreover, 5G is anticipated to witness an increase in the heterogeneity and density of 

access nodes (ANs) (e.g. ultra-dense networks (UDNs)) [13] as a solution to cope with the 

tremendous growth in the number of devices connected to the network and consequently boost the 

system’s capacity [14]. However, in UDNs the multi-tier interference becomes more severe. 

 Hence, the radio resource allocation process should be carried out in a central unit (CU), 

while taking into account the bigger network picture [15]. For instance, [16] proposes exploiting 

the temporal and spatial traffic fluctuations in the network to reduce the interference levels by 

turning off some ANs with low or no traffic loads. 

Recently, the Cloud-Radio Access Network (C-RAN) architecture has attracted attention 

as a key enabler in implementing interference avoidance and cancellation algorithm for flexible 

multi-tier 5G networks [17], as shown in Figure1.3. Despite the C-RAN’s centralization 

throughput gain, which is achieved by pooling the computational resources, there is a challenge 

regarding the delay-sensitive traffic due to the large network latency accruing from transferring 

the data through the core network and the Internet backbone. 
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Figure 1.3. Evolution of RAN architecture to C-RAN architecture that consists of distributed 
remote radio heads (RRHs) and a centralized baseband units (BBUs). 
 

 To satisfy the low latency requirements of delay-sensitive traffic, some computing 

processes, application servers and caching capabilities can be migrated from the cloud to the edge 

of the network, as illustrated in Figure 1.4, as an evolved architecture [18]. This architecture is 

commonly referred to as a Fog-Radio Access Network (F-RAN) [19], [20]. Hence, some of the 

traffic, in particular delay-sensitive traffic, will be served at the FRAN nodes and do not need to 

travel to the core network and the Internet. This results in a significant reduction in the network 

latency [21]. 

 
Figure 1.4. Fog radio access network (F-RAN) consisting of fog low power nodes (F-LPNs) each 
provided with limited local storage, BBU pool and real time computation.  
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1.4. Contributions and Organization of This Dissertation  

The research topics that are studied in this dissertation along with the titles of the main 

chapters are illustrated in Figure 1.5.  

 

 
Figure 1.5. Outline of the dissertation including the research topics and the names of chapters. 
   
The contributions presented in this dissertation can be summarized as follows: 

• A novel medium access protocol dubbed Slotted ALOHA NOMA (SAN) is designed for 

large scale IoT networks [22], [23]. The SAN protocol is easy to implement, energy efficient, 

scalable and compatible with the low complexity requirements of IoT devices. The synergistic 

combination of Slotted ALOHA (SA) protocol with NOMA and Successive Interference 

Cancellation (SIC) receivers was demonstrated to significantly improve the throughput 

performance with respect to the conventional SA protocol. The SAN protocol uses a form of 

multiple hypothesis testing for determining the number of active IoT devices in the medium. 

Knowing the number of active IoT devices at the IoT gateway is essential in order to optimize the 

SIC power levels to distinguish between the signals from different IoT devices that are transmitting 

on the same time and frequency. SAN has a substantial throughput gain of 5.5 dB relative to SA, 

when using 3 optimum power levels and a total of 60 IoT devices with 0.07 probability of 
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transmission. We compared the performance of SAN with the CSMA/CA protocol when deployed 

in large scale IoT networks [24]. The SAN protocol demonstrates superior throughput performance 

over CSMA/CA. Moreover, in [25], [26] we addressed the problem of channel access delay in 

SAN protocol by reducing the probability of collision and consequently lowering the average back-

off delay via using Multiple Input Multiple Output-Beam Forming (MIMO-BF). 

• Deep machine learning is used for proactive mobility management in 5G wireless 

networks. Proactively predicting the triggering conditions to enable/disable Coordinated 

Multipoint (CoMP) transmission and Virtual-Cell (VC) selection is investigated [26], [27]. A 

Recurrent Neural Network (RNN) based on the Gated Recurrent Units (GRUs) mechanism is 

applied to the feature vectors of the Received Signal Strength (RSS) values from all the Base 

Stations (BSs) in the network to make an accurate prediction about the RSS values in the future. 

The proposed algorithm is a promising approach to achieving the goal of providing a uniform user 

experience everywhere in a network with dynamic formation of VCs. Moreover, considering the 

very low-latency requirements of next-generation 5G networks, the proposed algorithm helps the 

mobility management function facilitate VC formations.  

• A novel game theoretical approach based on Bayesian games is created for cell 

selection/user association in 5G Heterogeneous Networks (HetNets) [28].The utility functions of 

the user equipment and the network are defined based on the achievable data rate, the average 

Round Trip Time (RTT) delay, and the access node’s traffic preferences. The proposed Bayesian 

game algorithm provides a significant improvement in terms of the probability of proper 

association (as a function of traffic type) and the achieved latency compared with Maximum-

Signal to Interference to Noise Ratio (Max-SINR) criterion and Cell Range Expansion (CRE) 

approach. Such a methodology can be quite important in achieving the 5G low latency objective. 
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This dissertation is organized as follows. Chapter 2 presents a literature review of the 

different research areas in this dissertation. A novel medium access protocol for IoT networks and 

simulation results for SAN and SAN with Multiple Input Multiple Output Beam-Forming (MIMO-

BF) are presented in Chapter 3. An innovative algorithm based on RNN-GRUs for predicting the 

triggering conditions for enabling/disabling CoMP mode in 5G wireless networks is presented and 

evaluated in Chapter 4. A Bayesian game approach is studied in Chapter 5 for low latency 

communication in 5G HetNets. Chapter 6 concludes the dissertation and provides some future 

research directions.    
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CHAPTER 2: LITERATURE REVIEW 

In this chapter, we present a literature review and some of the necessary background 

information needed for our research. In Section 2.1, the concept of the Internet of Things (IoT) 

and the associated challenges are described along with some of the fundamental medium access 

schemes and Random Access (RA) protocols. In Section 2.2, some of the state-of-the-art work on 

applying Machine Learning (ML) techniques are reviewed with a focus on application to future 

wireless networks. In Section 2.3, some of the current cell selection/user association approaches 

are described. Two of the proposed Radio Access Network (RAN) paradigms for 5G networks are 

also presented.   

2.1. Topic 1: Medium Access Protocols for Internet of Things (IoT) Networks 

2.1.1 Internet of Things (IoT) 

The term Internet of Things (IoT) has gained a lot of popularity in recent years, as a 

consequent to the anticipated increase in the number of devices connected to the Internet. 

According to Ericsson, the number of connected devices to the internet is expected to reach 28 

billion devices by 2021 [29]. IoT technology transforms physical objects “things” from 

traditionally being inactive to interactive and accessible from anywhere through the internet [30], 

[31], [32], [33]. As shown in Figure 2.1 smart homes are one of the main applications of IoT for 

an improved personal lifestyle. For instance, in smart homes it becomes possible by interacting 

with the smart refrigerators to send a message whenever a food item needs to be replenished, 

switching on the lights, adjusting the temperature, closing the garage door, and controlling other 

smart appliances remotely. The data generated by these smart home appliances will be transferred 
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through the IoT gateway to the Internet and then eventually to a smart home cloud server. Realizing 

the smart home vision can only be achieved through designing a medium access control (MAC) 

protocol to provide efficient connectivity for large number of devices. There are considerations 

that need to be taken into account when designing medium access control (MAC) protocols for 

this class of IoT networks.  

First, these smart home IoT devices generate payloads that are often smaller than the typical 

signaling overhead. Secondly, these IoT devices are energy-limited, since some of these IoT 

devices are battery powered sensor nodes and have low-complexity in terms of computation and 

processing capabilities. Moreover, one of the important considerations in designing MAC 

protocols for IoT networks is scalability, which can be defined as the feasibility of supporting 

massive number of devices using the same network and being able to accommodate devices newly 

joining the network without a large increase in complexity. This massive number of connected 

devices and the sporadic nature of their data traffic can lead to a severe congestion in medium 

access channels.  Hence, this severe congestion will increase the delay for the channel access and 

will increase the number of retransmissions which eventually causes an increase in energy 

expenditure too. 

 
Figure 2.1. The use case of an IoT managed smart home.   
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2.1.2 Medium Access Control (MAC) Protocols  

In the IoT literature, the IoT devices are referred to as machines, and the communication 

among these machines is referred to as Machine-to-Machine (M2M) communication or Machine 

Type Communication (MTC). The MAC protocols used for M2M communication in IoT networks 

can mainly be classified into two main categories as contention-free and contention-based 

protocols. 

2.1.2.1 Contention-Free Protocols  

One of the solutions for MAC protocols in M2M IoT networks is contention-free medium 

access protocols. In contention-free MAC protocols, collisions are avoided by ensuring that the 

resources are allocated exclusively to IoT devices, which can be achieved either via fixed or 

dynamic assignment strategies. Although fixed resource assignment strategies as in TDMA, 

FDMA or CDMA can avoid collisions, they are not scalable and inefficient. For instance, in 

TDMA the total transmission time is divided into time slots and each device can only transmit 

during its assigned time slot, and it is impossible to reallocate time slots assigned for one device 

to other devices if the time slot is not used. With dynamic assignment strategies, the IoT devices 

can access the medium on demand.  The controller (IoT gateway) sends a control-overhead 

message asking each IoT device if it has data to send, to reserve the transmission medium for only 

one device at a time. If there is no data to be sent, the controller sends the control message again 

for the next IoT device, and so on.  

Therefore, contention-free MAC protocols cannot provide high throughput to meet the 

demands of large numbers of IoT devices due to control overhead and the unused empty slots. For 

those reasons, contention-free MAC protocols are not scalable, though they can prevent collisions. 
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2.1.2.2 Contention-Based Protocols 

Contention-based MAC protocols (or uncoordinated random access schemes) have 

attracted lots of attention as a possible method for making massive M2M communication possible 

with a low signaling overhead [34], [35]. Contention based protocols such as Carrier Sense 

Multiple Access/Collison Avoidance (CSMA/CA) used in IEEE 802.11 perform well only for 

small networks and they do not have sufficient throughput for large scale networks due to the 

frequency of collisions. The same issues are valid for the familiar ALOHA and slotted ALOHA 

(SA) protocols. Moreover, CSMA/CA is energy inefficient, since it requires continuous channel 

monitoring and there is a significant overhead due to control packets that are not compatible with 

the limited battery requirements of IoT devices. Furthermore, slotted ALOHA protocols or their 

variants such as diversity slotted ALOHA (SA) [36] are not scalable approaches, because they 

require tight synchronization of the IoT devices in time domain, which can belong to different 

providers within the framework of heterogenous IoT networking.  

2.1.2.2.1 Overview of ALOHA-Based Protocols 

The ALOHA protocol, which is also referred to as pure ALOHA, was proposed by 

Abramson, from the University of Hawaii, as Random Access (RA) protocol for providing wireless 

connectivity between computers at different islands in Hawaii [37]. In wireless networks operating 

using the ALOHA protocol, the devices in the network access the shared wireless medium and 

transmit packets of different durations, independently and asynchronously. In ALOHA systems, a 

transmitted packet is received and decoded successfully when no other packets are received within 

the duration of the packet. When packets collide, and data is lost when two or more of the 

transmitted packets interfere with each other, as illustrated in Figure. 2.2. The IoT gateway sends 

an acknowledgement via a feedback channel, when the packets are received and decoded 
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successfully. In case an IoT device did not receive an acknowledgement from the IoT gateway 

within a certain time frame, it resends the same packet after “backing off” for a randomly selected 

period of time.  

 
Figure 2.2. Schematic diagram of ALOHA protocol with M IoT devices. The areas under the red 
dashed-lines correspond to the overlapping portions of transmitted packets from different IoT 
devices.  
 

The inter-arrival times of the new packets and the retransmission times of the collided 

packets are modeled as independent processes that are exponentially distributed. It is worth 

mentioning that ALOHA protocol has a small probability of collision when the number of active 

IoT devices in the network and the duration of packets are small. In particular, for an average 

packet duration of ! seconds and an arrival rate of " packets per second, the throughput can be 

expressed as "!#$%&'. Then, the maximum throughput (collision-free) can be calculated as (% #
$( ≈

0.18. Therefore, ALOHA protocol is not a suitable solution when the number of active IoT devices 

grows massively.  

Later, Slotted ALOHA (SA) was then proposed by Roberts and Abramson [38], [39]. In 

SA the time is divided into equal time slots that are equal to the packet duration !. The IoT devices 

can start transmission only at the beginning of any time slot, as shown in Figure 2.3. The maximum 

throughput of SA is #$( ≈ 0.368, which is double the maximum throughput of ALOHA protocol. 
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However, SA requires strict synchronization which requires additional overhead compared with 

ALOHA protocol. 

 
Figure 2.3. Schematic diagram of slotted ALOHA (SA) protocol with M IoT devices. The areas 
under the red dashed-lines correspond to the overlapping portions of transmitted packets from 
different IoT devices.  

 
Some efforts have been done to improve the efficiency of SA protocol. In [40], Reservation 

ALOHA (R-ALOHA) is introduced as an enhancement to the SA protocol. R-ALOHA protocol, 

as shown in Figure 2.4, has two modes of operation: contention mode (un-reserved) and 

contention-free mode (reserved). In the contention mode the time is divided into small time sub-

slots. During the contention mode, the IoT devices that have packets ready for transmission, first 

transmit short reservation requests using SA protocol over the time sub-slots. An IoT device can 

request one time slot or more within the reservation request sent. Then, IoT devices needs to wait 

for an Acknowledgement (ACK) sent by the IoT gateway to inform each IoT device on where to 

allocate their packets in time. Following the contention mode, the system switches to contention-

free mode where the time is divided into equally spaced time slots.  
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The premise which the ALOHA and the Slotted-ALOHA protocols were built on is that 

when two or more packets are transmitted during the same time slot, they will interfere (collide) 

with each other and the data will get lost. Therefore, in order to have a successful transmission, 

only one device should be transmitting at each time slot. In [36], the Contention Resolution 

Diversity Slotted ALOHA (CRDSA) protocol uses successive interference cancellation (SIC) 

receiver at the IoT gateway to resolve the collisions that might happen when two packets or more 

are transmit during the same time slot. In CRDSA, the IoT devices transmit replicas of their packets 

at different time slots. A pointer is included within each of the transmitted packets, indicating the 

location of the transmitted replicas in time.   

 
Figure 2.4. Schematic diagram of reservation ALOHA (R-ALOHA) protocol.  

 

For instance, as illustrated in Figure 2.5a, there are three packets transmitted from the IoT 

devices 1, 2 and 3 during the first, third and fourth time-slots. Only the packet transmitted from 

the second IoT-device (gray packet) is received successfully (collision-fee) during the fourth time- 

slot. After successfully detecting the packet transmitted by the second IoT device, the IoT gateway 

then reads the pointer sent at the header of the packet to find at what time-slot the replica is been 

transmitted.  

The IoT gateway uses this information to cancel the interference from the gray packet in 

the first time-slot. Assuming that the gray packet can be perfectly cancelled in the first time-slot 

(collision resolved), then the green packet can be decoded at the first time slot, as illustrated in 
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Figure 2.5b. Likewise, the blue packet can be decoded in the third time-slot, as shown in Figure 

2.5c. at the cost of delay.       

 
Figure 2.5. An illustration of slotted ALOHA with successive interference cancellation (SIC) 
receiver at the IoT gateway.  

 
2.1.2.2.2 An Overview on CSMA/CA Protocol 

The Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol was 

proposed as a mechanism to avoid collisions in random access protocols. The collision avoidance 

comes at the expense of energy inefficiency and the complexity of the IoT devices. The IoT devices 

keep sensing the wireless medium before making any transmission as precautionary measure to 

minimize collisions in the system. Moreover, in CSMA/CA the back-off time (the waiting time 

before attempting to transmit again) follows an exponential distribution. The retransmissions are 

spaced in time, according to an exponential distribution and as a function of the number of 
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collisions, in order to minimize the chances for another collisions. In particular, the retransmissions 

process should happen less-frequently (become more spaced in time) when the collisions start 

occurring more.  

However, as mentioned above, CSMA/CA is energy inefficient, since it requires 

continuous channel monitoring and there is a significant overhead due to control packets that are 

not compatible with the limited battery requirements of IoT devices. CSMA/CA also suffers from 

hidden-terminal and exposed terminal problems [41]. Moreover, CSMA/CA performs like other 

contention-based protocols that perform well only for small networks and do not have sufficient 

throughput for large scale networks due to the frequency of collisions. 

Our contribution in this topic is a novel medium access protocol that significantly increases 

the throughput by 5.5 dB in comparison with Slotted ALOHA protocol that makes it suitable for 

large scale IoT networks. Moreover, the proposed MAC layer protocol is easy to implement, 

energy efficient, scalable and compatible with the low complexity requirements of IoT devices. 

2.2. Topic 2: Deep Machine Learning in 5G Virtual Cell Networks 

Recently, there has been an increased interest for applying Machine Learning (ML) 

techniques to future 5G wireless networks. Unlike traditional deterministic rule-based 

optimization techniques, ML algorithms are real-time optimization algorithms that are adaptable 

and can cope with the ever-changing wireless environment. In a nutshell, ML techniques aim to 

deduce the best decisions to be made by the network via analyzing the prior collected data.  ML 

techniques can be categorized as supervised learning, unsupervised learning, and reinforcement 

learning. In supervised learning the machine is trained using labeled input data with the goal of 

learning the function that maps an input to an output. Whereas, in unsupervised learning the input 

data is unlabeled, and the job of the machine is to extract features and identify patterns in the 



www.manaraa.com

 20 

dataset to label the data by itself. Reinforcement learning is also another category of ML, where 

the machine learns by try and error through its interactions with the environment. In reinforcement 

learning the "machine" receives rewards for performing positive actions and penalties for 

performing negative actions. Unlike, the unsupervised learning which is used to identify patterns 

in unlabeled data, the goal in reinforcement learning is to find a sequence of actions that can 

maximize the total cumulative reward. 

Recently, there have been proposals using ML in predicting the next base station (BS) a 

user will be associated with. In particular, ML is used for mobility prediction that is utilized for 

making optimal hand-over (HO) decisions in wireless networks. In [42], the authors used Support 

Vector Machines (SVMs) for predicting the next cell ID based on certain features. They started 

first by using a short sequence of previously visited cell IDs and achieved an accuracy of 78 %. 

However, the accuracy of classification did not improve much after the length of the sequence was 

increased to more than three. Then after the authors added more features such as the time duration 

that a user was associated with a particular cell, users GPS coordinates and IDs, the classification 

accuracy did not improve and remained in the range between 77 - 78 %. Although, their approach 

was able to predict where a user would be associated with next, it was unable to predict the when 

this transition would happen. Hence, they further used undirected graphical models for predicting 

the next cell ID and the time a user would be associated with. They were still only able to achieve 

an accuracy of 78%.  

In [43], Tkacik and Kordik have used a Neural Turing Machine (NTM) to predict the 

mobility of criminal suspects. NTMs utilize a memory matrix with selective write and read 

operations in order to remember data and have dynamic state. The authors validated their proposed 

method both with synthetic data generated for seven people and real data recorded from six people 
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over a period of three months. They defined their own accuracy metric and showed that it 

outperformed a k-Nearest Neighbor (kNN) classifier. The highest accuracy they obtained in 

predicting locations was just over 82%, which was for one specific user.  

In [44], Luo et al. used a Nonlinear Autoregressive Exogenous Model (NARX) based on a 

Neural Network (NN) for HO prediction. The received signal strength (RSS) values and the delays 

between Access Points (APs) are fed to an NN with 12 hidden layers. The NN was able to predict 

a point which was close to the optimal HO location. Javed et al. [45] used signal strength variation, 

the past HO rate, number of cells with RSS values above a certain threshold (active set) and active 

set update rate as features for the AdaBoost algorithm with Decision Stumps to predict the 

occurrence of a HO. Liou and Huang [46] used the past three location coordinates as features for 

a Neural Location Indicator for predicting the node’s mobility and inferring HOs. 

Anagnostopoulos et al. [47] used the last four previous cell IDs a user had visited, in four-element 

feature vectors, for predicting the user’s next cell ID. They have compared the performance of k-

Nearest Neighbors (kNN), Naïve Bayes, Bagging and a vote of kNN, J48 Decision Trees, rule-

based learner (JRip) and AdaBoost. In [48], Anagnostopoulos et al. incorporated transition time 

slots into feature vectors. However, the obtained accuracy on the next cell predictions was very 

similar to [47]. 

 However, none of the above- proposed ML techniques consider a mobile node to be 

concurrently associated with multiple base stations (BSs) in creating Virtual Cells (VCs). In [49], 

Wickramasuriya et al. used sequences of Received Signal Strength (RSS) values as features for 

training a Recurrent Neural Network (RNN) classifier based on Long Short-Term Memory 

(LSTM) to predict the next base station (BS) that a mobile node will be associated with and the 

optimal VC topology according to the mobility of users. While the authors achieved an accuracy 
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of 98 %, they did not consider predicting the optimal triggering conditions for enabling/disabling 

coordinated multipoint (CoMP) transmission based on the mobility of users - which is the goal of 

our work.   

Our contribution in this topic is a novel algorithm for proactively predicting the optimal 

triggering conditions that can be used to dynamically enable/disable CoMP transmission instead 

of relying on passive approaches. The proposed algorithm is based on using Recurrent Neural 

Networks (RNNs) with a Gated Recurrent Units (GRUs) mechanism. 

2.3. Topic 3: Cell Selection/User Association in 5G Heterogenous Networks 

As a natural result of the expected increase of heterogeneity in 5G networks, as we earlier 

discussed in CHAPTER 1, the user equipment (UE) will have a large range of connectivity options 

with different requirements such as power consumption, latency budget, and the achievable data 

rate. To best exploit the available opportunities, both the UE’s traffic type and the capabilities of 

available Access Nodes (ANs) should be taken into account at the cell selection/user association 

stage. As illustrated in Figure 2.6, the process of cell selection/user association in traditional 

cellular systems is based on the AN that can provide the highest signal-to-interference-plus-noise 

ratio (SINR) [50]. However, this approach is generally not optimum in multi-tier networks with 

diverse traffic. To alleviate this problem, [51] introduces the cell range expansion (CRE) approach 

for Low Power Nodes (LPNs) via a biasing method such that the High-Power Node (HPN) transmit 

power is reduced on a group of sub-carriers in order to enable better coverage on the same group 

of sub-carriers for an overlaid LPN, as shown in Figure 2.7. Another approach for cell association 

is to employ user-perceived rate considering the SINR and the network load [52].  

However, these papers did not take into account the different types of traffic. Indeed, the 

selection and association procedure based only on the maximum SINR and CRE criteria might 
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degrade the performance of the system from a latency perspective (i.e. when UEs of delay-tolerant 

traffic get associated with Fog-Low Power Nodes (F-LPNs) or when UEs of delay- sensitive traffic 

are associated with a HPN). Our contribution in this topic is a novel Bayesian cell selection / user 

association algorithm, incorporating the access nodes capabilities and the user equipment (UE) 

traffic type, in order to maximize the probability of proper association and consequently enhance 

the system performance in terms of achieved latency. 

 
Figure 2.6. Reference signal received power (RSRP)-based cell selection approach used in long 
term evolution (LTE) systems. 
 

 
Figure 2.7. Cell range expansion (CRE) approach. 
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CHAPTER 3: SLOTTED ALOHA NOMA (SAN) PROTOCOL FOR IoT NETWORKS1 

3.1. Introduction 

Non-Orthogonal Multiple Access (NOMA) has emerged as a promising technology in 5G 

networks for many applications [53], [54]. The proposed Slotted ALOHA NOMA (SAN) protocol 

is a synergistic combination of the low complexity Slotted ALOHA (SA) protocol with the high 

throughput feature of NOMA [22], [23]. The main bottleneck of SA systems is the low throughput 

caused by the high number of collisions, which can be addressed by NOMA. In SAN the signaling 

overhead is reduced in the detection phase of the proposed protocol where the number of active 

IoT devices are detected by the gateway using a form of multiple hypotheses testing, which is 

further explained in Section 3.4.  

The SAN protocol is also an energy efficient protocol due to the fact that a Successive 

Interference Cancellation (SIC) receiver can resolve collisions under certain conditions [55], [56], 

and thus minimizes retransmissions and significantly increases the conventional Slotted ALOHA 

(SA) throughput. The SAN protocol can be suitable for various scenarios where many IoT devices 

are transmitting simultaneously on the same frequency with different power levels to an IoT 

                                                
1 This chapter is an enhanced version of 

1- M. Elkourdi, A. Mazin, Eren Balevi and R. D. Gitlin, " Enabling Slotted Aloha-NOMA for Massive M2M 
Communication in IoT Networks," IEEE 19th Wireless and Microwave Technology Conference 

(WAMICON), April 2018. 
2- M. Elkourdi, A. Mazin and R. D. Gitlin, " Slotted Aloha-NOMA (SAN) in 5G IoT Networks," IEEE 

Communication Theory Workshop, May 2018, Miramar Beach, Florida. 
3- M. Elkourdi, A. Mazin and R. D. Gitlin, " Slotted Aloha-NOMA with MIMO Beamforming for Massive 

M2M Communication in IoT Networks," IEEE 88th Vehicular Technology Conference (VTC2018-Fall), 
Chicago, IL, USA, August 27-30, 2018. 
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gateway since the received signals can be reliably detected via use of Successive Interference 

Cancellation (SIC) receiver.  

The structure of this chapter is as follows. In Section 3.2, an overview of Power Domain 

Non-Orthogonal Multiple Access (PD-NOMA) is presented. The frame structure of the proposed 

SAN protocol is discussed in Section 3.3 and Section 3.4 describes detecting the number of active 

IoT devices using a form of multiple hypothesis testing [22], [23]. In Section 3.5, simulation results 

are presented to show the superiority of the proposed SAN method regarding throughput with 

respect to Slotted ALOHA (SA). Also, additional simulation results are presented that analyze the 

throughput of the SAN protocol as function of the number optimum power levels and compare the 

SAN protocol with conventional SA in terms of channel access delay. Lastly, Section 3.6 presents 

a further enhancement of the SAN protocol using “MIMO” Beam-Forming (BF) to reduce the 

channel access delay [25]. Furthermore, simulation results are performed in Section 3.6 to show 

that SAN with beamforming outperforms both SAN and Slotted ALOHA protocols in terms of 

throughput and channel access delay without excessively increasing the SIC power levels.   

3.2. Overview on Non-Orthogonal Multiple Access (NOMA) 

The Internet of Things (IoT) is a key part in the future 5G network. Therefore, it was 

essential to rethink the medium access (MA) schemes to meet the requirements of high spectrum 

efficiency while supporting a massive number of connected devices. Non-Orthogonal Multiple 

Access (NOMA) is a promising scheme that provides better spectrum efficiency using Successive 

Interference Cancellation (SIC) at the receiver [57].  

It is worth mentioning that NOMA in the power domain has been proposed for inclusion 

in Long Term Evolution-Advanced (LTE-A) for the downlink as Multiuser Superposition 

Transmission (MUST) [58]. As shown in Figure 3.1, unlike Orthogonal Multiple Access (OMA) 
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schemes (such as TDMA, FDMA and CDMA), NOMA can improve the capacity of the system by 

simultaneously serving multiple devices over the same time/frequency resources using different 

power levels that are separated at the receiver using a SIC processor.  

Orthogonal Multiple Access (OMA) is a well-known technique that is free of inter-device 

interference within each resource block. On the other hand, NOMA enhances the system capacity 

compared with OMA through sharing the same resource block by multiple devices. The 

enhancement in system capacity is achieved by exploiting the differences in channels between 

devices. However, there is no "free-lunch", this enhancement is obtained at the cost of employing 

algorithms at the receiver to iteratively cancel the interference from other devices.  

Moreover, using NOMA provides each device a transmission bandwidth that is relatively 

wider compared to OMA. In Figure 3.2 the capacity comparison using NOMA and OMA 

techniques is illustrated when the channels for the two devices A and B are different. We can see 

that the boundary of achievable rate pairs with NOMA is outside the OMA capacity region. 

 
Figure 3.1. Orthogonal multiple access (OMA) vs. non-orthogonal multiple access schemes. β" 
and β# are the fractions of the total power for devices A and B. P" and P# represents the allocated 
power levels for devices A and B respectively, |h"| and |h#| are the channel gains, B is the total 
transmission bandwidth, and ' is the fraction of bandwidth allocated for device B [59].   
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Therefore, under the assumption of perfect SIC cancellation, it can be shown that when the 

Signal-to-Noise Ratios (SNRs) of the two users are different, the rates of devices A and B 

calculated using NOMA in (3.1) and (3.2) respectively are much greater than the rates calculated 

using the OMA technique in (3.3) and (3.4) [59].   
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P"|h"|1

N3
)	, 

(3.1) 
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Figure 3.2. OMA vs. NOMA capacity regions [59].  
 

A downlink scenario of NOMA is illustrated in Figure 3.3. In this example, device B is 

presumed to be the device with poor channel gain and device A is the device with the good channel 

gain. The key idea is that the access point (AP) first sorts “orders” the channels of the devices and 

exploits the power domain by allocating more power to device B and less power to device A. Then 
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after that, the Quadrature Phase Shift Keying (QPSK) constellation of device A is superposed on 

QPSK constellation of device B using superposition coding which was first proposed by Cover for 

broadcast channels [60].  

Then the AP sends a linear superposition of device’s A and B data, where β" and β# are 

the fractions of the total power allocated to devices A and B respectively.  At the receiving ends, 

device A receives the superposed signal 9:;;;⃑ . As shown in Figure 3.4, device A (with the better 

channel gain) uses the successive interference cancellation (SIC) receiver. Device A will first 

decode the signal of device B and then subtracts the device B message from the superposed 

received signal 9:;;;⃑  to decode its own message =:;;;;⃑ . On the other hand, device B can decode its 

message =>;;;;⃑   by only treating device A’s signal =:;;;;⃑  as a noise. 

 
Figure 3.3. Superposition coding for quadrature phase shift keying (QPSK) constellation points of 
devices A and B [59].   
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Figure 3.4. Successive interference cancellation (SIC) receiver [59].  
 
3.3. Flexible Frame Structure for the SAN Protocol  

One of the main challenges for enabling the practical implementation of the SAN protocol 

is the assignment of proper power levels for the IoT devices before transmitting the information; 

otherwise, the signals received from different IoT devices cannot be extracted successively from 

the composite received signal. This issue becomes more challenging in dynamic environments 

where the number of IoT devices with information ready to send is continuously changing.   

In this section, this challenge is addressed via a flexible frame structure. Such a scheme 

provides great flexibility in adapting to changing network environments. This structure is in 

contrast to that of TDMA or FDMA, where arrival of a new user can completely change the overall 

frame structure such that the additional user must be assigned at least one slot within the frame.  

As illustrated in Figure 3.5, the proposed frame structure composed of 5 phases.  

In the first phase, the IoT gateway transmits a beacon signal to announce its readiness to 

receive packets. Next, the IoT devices with packets ready to transmit send a request (with “dummy 

packets”) to aid the gateway in detecting the number of active IoT devices in the medium. The IoT 
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gateway detects the number of devices requesting transmission via a form of multiple hypotheses 

testing, as discussed in Section IV, and adjusts the degree of the SIC receiver1 for the optimum 

power levels. In practice, the SIC receiver has fixed range of optimum power levels (e.g. m=2,3).  

Notice that it would lead to easier implementation if all IoT devices are registered to the 

gateway instead of relying on multi-hypothesis testing; However, this may significantly increase 

the length of control phase and thus decrease the payload or throughput considering the large 

number of IoT devices. If the detected number of active IoT devices is not in the range of optimal 

power levels, then the IoT gateway aborts the transmission and starts all over again by sending a 

beacon signal.  

Otherwise, the IoT gateway broadcast the degree of SIC to the transmitters and then each 

one of the active IoT device randomly picks one of the optimum power levels. If the choices are 

distinct the SIC receiver can decode the self-identifying signals (device ID + payload) and then 

the gateway sends an ACK. If the active IoT devices could not select distinct power levels, the 

SIC detection will fail and a reselection process is repeated. If after a few attempts, there is no 

successful transmission, the users receive a NACK and enter a random back-off mode. It should 

be clear, that the proposed protocol will be most efficient when there is a small number of active 

devices, so that the probability of randomly choosing distinct optimum power levels remains high.  
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Figure 3.5. The proposed SAN protocol frame structure.  
 
3.4. Detecting the Number of Active IoT Devices 

This section presents a form of multiple hypothesis testing used to detect the number of 

active devices. The detection of active devices starts in the second phase of the SAN frame as 

presented in Fig.2. After receiving the beacon, all the IoT devices send at the same power level 

using SA a training sequence (known to the IoT gateway) of length L. The superposed received 

signal at the IoT gateway from N active transmitting IoT devices is given by 

 ? = @A + B, (3.1) 

where @ = [	ℎE, ℎ1, … , ℎG] ∈ 	ℝE×G, ℎL is the channel gain between the MNOIoT device and the 

IoT gateway, A	 ∈ 	ℝG×P	is the transmit sequence (e.g. BPSK) from N IoT active devices and B	 ∈

	ℝE×P is the additive white Gaussian noise with zero mean and variance Q1. In this simplified 

model, it is assumed that all the channel gains are known at the IoT gateway, so that the received 

powers can be controlled and set equal. The multiple hypothesis test is used to detect the number 

of N active IoT devices from the total M IoT devices. The following procedure is used to 

sequentially detect the number of active devices 
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 ℋ3: Received signal contains only noise  

 ? = B, (3.2) 

 ℋE: Received signal contains data from one IoT device  

 ? = ℎESE + B, (3.3) 

 ⋮  

 ℋG: Received signal contains data from N IoT device  

 ? = @A + B. (3.4) 

We assume ℎL = 1, ∀	M	 ∈ {1, 2, … , X}. Following the Neyman-Pearson (NP) test, we can write 

the Likelihood Ratio (LR) testing [] ℋG Vs. ℋGZE as  

 
[(\;∑ _LG

L`E ,ℋG)
[(\; ∑ _LGZE

L`E ;ℋGZE)
=
	ab[ c− 1

2Q1 (\ − ∑ ℎL_LG
L`E )d(\ − ∑ ℎL_LG

L`E )e

	ab[ c− 1
2Q1 (\ − ∑ ℎL_LGZE

L`E )d(\ − ∑ ℎL_LGZE
L`E )e

≷ℋghi
ℋg 	, 

(3.5) 

where	j, X = 1,… .k	and sp 	∈ ℝE×P	is the transmitted sequence from MNO IoT device. By taking 

the logarithm, (3.5) is simplified to  

 q(?)

=	1rs \
r−1

t=0
≷ℋX
ℋX−1 2Q

2 lnj−(v∑ ℎM_MX−1
M=1 wv∑ ℎM_MX−1

M=1 w
q + v∑ ℎM_MX

M=1 wv∑ ℎM_MX
M=1 w

q)
−2(∑ ℎM_MX−1

M=1 + ∑ ℎM_MX
M=1 )

= j′. 

(3.6) 

 The NP detector, or the test statistic, in (3.6) compares the sample mean of the received signal to 

the threshold jy to decide on a hypothesis ℋG or ℋGZE. The NP test terminates if the number of 

detecting devices exceeds the number of SIC receiver optimum power levels, which are 3 levels 

in this chapter. To compute the threshold jy in (4) for a desired probability of false alarm PFA, 

which occurs when deciding ℋG if the test in (4) is greater than the threshold jy, so that PFA can 

be written as 
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 z{| = z(q(\) > jy;	ℋG), (3.7) 

Since the test in (3.6) under both hypothesis is a Gaussian distribution, that 

q(\)	~	�(∑ ∑ _LGZE
L`E

PZE
Ä`3 , Å

Ç

P
) under ℋGZE and q(\)	~	�(∑ ∑ _LG

L`E
PZE
Ä`3 , Å

Ç

P
) under ℋG we 

rewrite (5) as 

 
z{| = É Ñ

jy − ∑ ∑ _LG
L`E

PZE
Ä`3

ÖQ1 r⁄
á. 

(3.8) 

Thus, the threshold jy is given by  

 
jy 	= ÉZE(z{|)ÖQ1 r⁄ +s s_L.

G

L`E

PZE

Ä`3
 

(3.9) 

Following the same steps, the probability of detecting the number of active devices is 

 
zà = É Ñ

jy − ∑ ∑ SLGZE
L`E

PZE
Ä`3

ÖQ1 r⁄
á. 

(3.10) 

From (3.9), (3.10) we can write the zà as a function of energy to noise ratio as  

 
zà = É ÑÉZE(z{|) +

∑ ∑ _LG
L`E

PZE
Ä`3 − ∑ ∑ _LGZE

L`E
PZE
Ä`3

ÖQ1 r⁄
á. 

(3.11) 

The probability of correct detection of the number of active users as a function of the SNR for z{| 

= 0.1 is shown in Figure 3.2. Observe that the detection performance increases monotonically and 

smoothly with increasing SNR.   
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Figure 3.6. Probability of detection as a function of SNR.      
                                                
3.5. Simulation Results 

In this section simulation results are presented to evaluate the throughput performance of 

the SAN protocol. Throughout the simulation, we assume there is one IoT gateway with a single 

antenna and a total of k IoT devices. A binomial distribution is considered to model the random 

number of active IoT devices X, each with probability of transmission [d.  

 zd(X; [d,k) = 	 â
k
Xä[d

G(1 − [d)ãZG. 
(3.12) 

Figure 3.7 shows the throughput of the SAN protocol for different values of probability of 

transmission zd, total number of IoT devices k = 50 and ç = 3 attempts for the random selection 

of distinct optimum power levels. Throughput is the number successful transmissions for each 

probability of transmission. As expected, we observe that the throughput decreases with increasing 

probability of transmission. More importantly, we can see that the throughput of the SAN protocol 

is always higher than that of the SA protocol. In particular, when the probability of transmission 

is 0.07, the throughput of SAN with 3 power levels becomes almost 3.6 times higher than that of 
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(conventional) SA. This demonstrates that NOMA with a SIC receiver can help improve the 

throughput of SA, especially when the IoT devices are active.  

 
Figure 3.7. Throughput of slotted ALOHA-NOMA (SAN) with 2 and 3 optimum power levels vs 
slotted ALOHA as a function of probability of transmission.  
 

In order to see the impact of the number of optimum power levels on the throughput of 

SAN, we show the throughput of SAN for different power levels in Figure 3.8. With k = 10, ç =

3 and probability of transmission of 0.25, the throughput of SAN increases with the increase in 

optimum power levels (SIC degree). For example, SAN with 3 power levels has a higher 

throughput than SAN with 2 power levels. However, the throughput improvement becomes 

negligible for optimum power levels greater than 5 (saturation in the throughput gain). Also, the 

simulation results shown in Figure 3.8, illustrates the impact of the number of attempts ç, for 

picking distinct optimum power levels, on throughput for different optimal power levels. The more 

attempts allowed for picking the optimum power levels, the higher the throughput that can be 

achieved at the cost of increased delay. 



www.manaraa.com

 36 

 
Figure 3.8. Throughput as a function of optimum power levels for different number of attempts 
(2, 3 and 5) using SAN protocol. 
 

Figure 3.9 Shows the average channel access delay as a function of probability of 

transmission for the SAN protocol vs. the Slotted ALOHA protocol. It is shown that at a low 

probability of transmission, the Slotted- ALOHA-NOMA (SAN) protocol has a larger average 

channel access delay compared with conventional Slotted-ALOHA protocol. While, at a high 

probability of transmission both ALOHA NOMA2 and Slotted-ALOHA deliver the same average 

channel access delay.      

                                                
2 ALOHA NOMA and Slotted ALOHA NOMA (SAN) will be used interchangeably in this chapter.  
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Figure 3.9. Average channel access delay as a function of probability of transmission for the SAN 
protocol and the well-known slotted ALOHA protocol. 
 
3.6. Slotted ALOHA-NOMA with MIMO Beam-Forming (BF-SAN) 

In this section, the simulation results evaluate the throughput and channel access delay 

performance of the Beamforming Slotted ALOHA-Non-Orthogonal Multiple Access (BF-SAN3) 

protocol. Throughout the simulation, we assume there is one IoT gateway with Nè receiving 

antennas and a total of k IoT devices each with Nê transmitting antennas.  

Figure 3.10 shows the throughput of BF-SAN for different values of probability of 

transmission Pë, when k = 60, Nê = 2, Nè = 2, m = 3 optimum power levels and k = 3 attempts 

for the random selection of distinct optimum power levels. In the simulation, throughput is defined 

as the average number of packets that are successfully decoded for a given probability of 

transmission. As expected, we can observe that the throughput decreases as the probability of 

                                                
3 BF-SA-NOMA and BF-SAN will be used interchangeably in this chapter. 



www.manaraa.com

 38 

transmission increases. Also, we can see that the throughput of the BF- SAN protocol is always 

higher than that of SAN and conventional Slotted ALOHA protocols. In particular, when the 

probability of transmission is 0.15, the throughput of BF- SAN is almost 60 times higher than that 

of conventional Slotted ALOHA and 2 times higher (i.e., the beamforming gain) than SAN 

protocol.  

 
Figure 3.10. Throughput as a function of probability of transmission for BF-SAN, SAN and 
conventional slotted ALOHA protocols.  
 

This demonstrates that BF-SAN provides a dramatic improvement in throughput in 

comparison with conventional Slotted ALOHA and SAN protocols due to the additional “virtual” 

sub-channels in the spatial and power domains. More importantly, it is worth mention that 

achieving a throughput gain similar to that of the proposed BF- SAN using SAN requires an 

excessive increase in SIC power levels which is impractical when using power-limited IoT 

devices. In Figure 3.11 and Figure 3.12 we show the beamforming gains in terms of the channel 

access delay and throughput of BF-SAN for different values of probability of transmission when 
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ç = 2,3 attempts, Nè = 2, Nê = 2, M = 60, and m = 3 optimum power levels. In simulation, the 

channel access delay is composed of three components, namely: round trip delay, delay due to the 

attempts for random selection of distinct power levels, and the back-off delay (that occurs at the 

event of the number of active IoT devices is greater than the degree of SIC receiver or when the 

IoT devices fail in selecting distinct optimum power levels in k attempts).  Figure 3.11 and Figure 

3.12 illustrates the beamforming gains, where it is shown that BF-SAN when k = 2 can still 

achieve a higher throughput than ALOHA-NOMA when k = 3 with a lower channel access delay 

resulting from reducing the probability of collision and the average back-off delay by creating 

more virtual sub-channels via MIMO beamforming.  

 
Figure 3.11. Throughput of BF-SA-NOMA VS. ALOHA-NOMA for different values of 
probability of transmission when M = 60, m = 3, k = 2 and 3 attempts, NN = 2 and Nè = 2.  



www.manaraa.com

 40 

 
Figure 3.12. Average delay of BF-SA-NOMA VS. ALOHA-NOMA for different values of 
probability of transmission when M = 60, m = 3, k = 2	and 3 attempts, Nè = 2 and Nê = 2.  
 

Also, the simulation results in Figure 3.11, shows the impact of the number of attempts k, 

for picking distinct optimum power levels, on throughput for different optimal power levels. The 

more attempts allowed for picking the optimum power levels, the higher the throughput that can 

be achieved at the cost of increased delay.  
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CHAPTER 4: OPTIMIZATION OF 5G VIRTUAL-CELL BASED COORDINATED 

MULTIPOINT NETWORKS USING DEEP MACHINE LEARNING 1 

4.1. Introduction 

As discussed in earlier chapters, the concept of virtual-cell networks has emerged as new 

paradigm for serving wireless users [61]. In a virtual-cell (VC) architecture, a group of base-

stations (or transmission points [TPs]) is created and is updated as the user moves within the 

network. The users that are within the domain of a virtual-cell can be associated with multiple 

base-stations (BSs) and their data transmitted (or received) will be coherently processed by 

multiple BSs. The association of users with multiple BSs is dynamically managed and updated at 

a centralized unit (Centralized Radio Access Network (C-RAN)). This approach removes the 

notion of cell borders and creates virtual cells that move according to the user mobility in the 

network. 

The main contribution of this chapter is to propose a novel algorithm for automated 

managing of 5G virtual-cell networks [26], [27]. This algorithm is based on machine learning (ML) 

[62] and proactively predicts the optimal triggering conditions that can be used to dynamically 

enable/disable Coordinated Multipoint (CoMP) transmission [9] (or to form/dissolve VCs), instead 

of relying on passive approaches, as illustrated in Figure 4.1. The proposed algorithm uses 

                                                
1 This chapter is an enhanced version of 

1- M. Elkourdi, A. Mazin and R. D. Gitlin, "Optimization of 5G Virtual Cell Based Coordinated Multipoint 
Networks Using Deep Machine Learning," International Journal of Wireless & Mobile Networks (IJWMN) 
Vol. 10, No. 4, August 2018. 

2- M. Elkourdi, A. Mazin and R. D. Gitlin, "Performance Analysis for Virtual-Cell Based CoMP 5G Networks 
Using Deep Recurrent Neural Nets”, submitted to Wireless Telecommunications Symposium (WTS), 2019.  
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Recurrent Neural Networks (RNNs), and in particular it uses Gated Recurrent Units (GRUs) [63]. 

Assuming that the sequences of Received Signal Strength (RSS) values of different mobile nodes 

in the network are available for training the GRU, the simulation results have shown that the future 

RSS values can be rapidly predicted with a very high accuracy based on the user mobility as shown 

in Section 3.4 of this dissertation. The predicted RSS values are used for making proactive decision 

on enabling/disabling the virtual-cell mode as the user moves in the network [26], [27]. One major 

challenge in order to make a reliable prediction is to collect a sufficient number of sequences in 

the target areas, so-called “big data”. 

 
Figure 4.1. Adaptively enabling / disabling coordinated multipoint (CoMP) transmission according 
to the trajectory of a user in the network. (a) Mobile associating with the nearest base station (BS). 
(b) Forming a virtual cell (VC) using an enabling a CoMP cooperating set. (c) Dissolving a VC. 
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4.2. CoMP Management Based on Recurrent Neural Network  

A. System Model 

A road network of dimensions 6 km × 6 km with a regularly spaced intersections of 1 km 

apart is generated, as shown in Figure 4.2. Within this grid, Eight BSs are placed in arbitrary 

locations. A mobile node is randomly generated on a road with an initial speed drawn from a 

uniform distribution between 8-12 km/h for pedestrians and between 55-65 km/h for vehicles. It 

is assumed that a mobile node continues to maintain a constant speed until leaving the road 

network. At any intersection a mobile node is assigned a probability of 0.5 for moving straight 

ahead, or an equal probability of 0.25 for turning either right or left. When a node is within the 

road network, it measures the RSS values from the closest three BSs. This method was chosen to 

demonstrate the capability of RNNs to learn sequences in order to predict RSS values to 

proactively enable/disable CoMP transmission. The path loss model adopted in the system model, 

is suggested by 3GPP [64], with an additional term to account for large- scale shadow fading. 

Here, σ is normally distributed with mean zero and variance 9 dB and d is measured in kilometers. 

 

 PL(d) = 128.1 + 37.6	 log(d) + σ, (4.1) 
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Figure 4.2. A road network with eight base stations (BSs) (crosses) and a mobile node (circle). 
The grid lines are the roads.  Each mobile node measures the received signal strength (RSS) from 
the three closest BSs [49]. 
 
B. Dataset 

The data used is in the form of eight-element feature vector is created, where the positions 

correspond to BSs with their RSS values. The RSS values are recorded every 500 ms from the 

closest three BSs to the mobile node. The rest of the vector elements are set to zero. As the mobile 

node moves along the road network and the set of closest three BSs changes, the RSS values 

(feature vectors) are recorded and stored consecutively in a queue data structure. Table 4.1 presents 

a sample of the RSS data recorded for nine nodes (in rows) in the road network from the eight base 

stations (in columns). 

 Since the recorded RSS values from the distant past do not have a large predictive value 

regarding the direction the mobile node is heading to, the oldest elements are dropped from the 

queue when its size exceeds 150. With this method mobile nodes were simulated until a total of 

100,000 sequences were collected. 
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Table 4.1: Sample of RSS values for different nodes 
 

 
 
 
 
 
 
 
 
 
 
 
 
C. Recurrent Neural Network (RNN) Based on Gated Recurrent Units (GRU) 

The RNN is used to discover patterns in sequential information (or temporal data). Unlike 

traditional neural networks where all inputs (and outputs) are assumed to be independent of each 

other, RNNs have a memory which captures information about what happened in all previous time 

steps to help learn a large range of dependencies. The GRU was first introduced by Cho et al. [63] 

as a modification to the hidden layer (H) RNN, to solve the vanishing gradient problem. The RNN 

architecture tends to give priority for the most recent inputs and neglects the effects of inputs that 

are further away in the past, as illustrated in Figure 4.3. A GRU is made up of two gates, as shown 

in Figure 4.4. The first is the update gate, which controls how much of the current cell content 

should be updated with the new candidate state. The second is the reset gate, which resets the 

memory of the cell if it is closed i.e. the unit acts as if the next processed input was the first in the 

sequence. The state equations of the GRU are [63].  

 reset	gate:	:[t] = 	σ(=>?[t − 1] + A>B[t] +	C>), (4.2) 

 current	state: ?H[I] = 	?[I − 1]⨀		:[I],				 (4.3) 

 candidate	state: L[I] = 	M(=N?H[I − 1] + ONB[I] +	PN),		 (4.4) 

 update	gate: R[I] = 	S(=T?[I − 1] + OTB[I] +	PT),	 (4.5) 

BS1 BS2 BS3 BS4 BS5 BS6 BS7 BS8 
0.0 0.0 0.0 -88.5 -102.1 -107.8 0.0 0.0 
0.0 -83.5 -107.0 0.0 -90.8 0.0 0.0 0.0 
0.0 -82.1 - 60.7 0.0 -98.4 0.0 0.0 0.0 
0.0 0.0 -95.9 -91.6 -82.5 0.0 0.0. 0.0 
0.0 0.0 0.0 -79.5 -82.5 -101.8 0.0 0.0 
0.0 -73.5 -117.0 -80.5 0.0 0.0 0.0 0.0 
0.0 -85.1 - 90.7 -60.3 0.0 0.0 0.0 0.0 
0.0 0.0 -85.9 -81.6 -92.5 0.0 0.0. 0.0 
0.0 0.0 0.0 -98.5 -112.1 -105.8 0.0 0.0 
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 new	state: ?[I] = (1 − R[I])⨀?[I − 1] + 	R[I]⨀	L[I],	 (4.6) 

where, M(. ) is non-linear function usually implemented by a hyperbolic tangent, S is the logistic 

sigmoid2, =V=N=Tare  rectangular weight matrices, that are applied to the input x[t] (RSS values 

from all eight BSs), AVANAT are square matrices that define the weights of the recurrent 

connections, CVCNCT are the bias vectors, and ⨀ is the Hadamard product.  

After constructing the RNN-GRU model, the prediction error is evaluated using the Mean 

Square Error (MSE) loss function. The loss function, which measures the difference between the 

true and the predicted RSS values, is defined as follows. 

 
MSE = 	ℒ[\], \_̂ ` = 	
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(4.7) 

where N is the number of training examples, no,p is the vector of observed RSS values from each 

of the 8 BSs,  \],c is the vector of true RSS values and  \^,cd  denotes the predicted RSS values (the 

output of the GRU-RNN model).  The purpose of training the GRU-RNN model is to minimize 

the loss function by choosing a proper weighting matrix q. Thus, the optimization problem can 

be formulated as follows. 
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2 The logistic sigmoid is defined as S = k

ktuvw
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Figure 4.3. (a) RNN structure. (b)  RNN structure unfolded in time. 
 

 
Figure 4.4. Gated recurrent unit (GRU) architecture. Dark gray circles with a solid line are the 
variables whose content is exchanged with the input and output of the network. Dark gray circles 
with a dashed line represent the internal state variables, whose content is exchanged within the 
cells of the hidden layer. White circles with +, 1 and represent linear operations. 
 
4.3. Simulation Results 

In the simulation, a Gated Recurrent Unit (GRU) mechanism with 512 units is used to 

predict the RSS values for making a proactive decision on whether to form/dissolve VCs via 

enabling/disabling CoMP transmission (predict the optimal triggering conditions for 
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enabling/disabling CoMP and forming VCs). A total of 70,000 sequences were used for training 

the GRU model and 30,000 were used for testing it. With 15 training epochs and 75 steps per 

epoch, the testing error gradually converged. The performance of the GRU model in predicting the 

RSS values of two different UE from the closet three BSs is shown in Figure 4.5. It was shown 

that the GRU model can output predictions on the RSS values that are very close to the true values 

most of the time. Based on these predictions, the network can proactively make a decision on 

enabling the CoMP transmission for the goal of providing a uniform user experience. 

Figure 4.6 shows the Cumulative Distribution Function (CDF) of the number of enabled 

virtual cells when the GRU-RNN predictive model is applied. Note that the virtual-cell mode is 

enabled 14 times during the whole duration of time that nodes spend within the network with a 

probability approximately of 0.95, instead of relying on static virtual cell. Figure 4.7 depicts the 

gradual decrease of the loss function represented in Equation (4.7) as a function of the number of 

epochs. It shows that with 75 training epochs, the testing error based on MSE gradually converges.       
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Figure 4.5. True versus predicted received signal strength (RSS) values for two different UEs. (a) 
True and predicted RSS values measured from closet three BSs (3, 4 and 5). (b) True and predicted 
RSS values measured from closet three BSs (4, 5 and 6). 
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Figure 4.6. The CDF of enabling virtual cells using the GRU-RNN predictive model.  
 

 
Figure 4.7. Convergence of the training model calculated based on MSE loss function. 
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4.4. Performance Analysis and Discussion  

In this section, the performance of ML-based virtual-cell systems are evaluated in terms of 

the precision, recall, and accuracy, which are defined later. As illustrated in Section 4.3, for any 

node in the network, the future RSS values from each of the 8 BSs are predicted using the GRU- 

RNN model. The predicted RSS values are then used to make cooperative decisions among the 

BSs for enabling or disabling the virtual cell mode. The process of making proactive decisions 

about enabling or disabling VC mode becomes a binary classification problem and hence the 

precision and recall performance measures can be used for evaluating our model. 

A. Precision 

Precision is used to measure the exactness of a classifier. It is calculated by dividing the 

number of True Positives (TPs) by the sum of the True Positives (TPs) and False Positives (FPs). 

In our system, TP and FP represent respectively the number of true predictions about enabling th 

VC mode and the number of false predictions about enabling the VC mode, respectively, for each 

node in the network. Low precision of the classifier indicates that the classifier enables the VC 

mode when it’s not actually needed, which results in wasting network resources.  

 
Total	precision = 	b

TP
TP + FP

z

{jk

	% = 	86.68	%, 
(4.9) 

B. Recall 

Recall is used to measure the competence of a classifier. It is calculated by dividing the 

number of True Positives (TPs) by the sum of True Positives (TPs) and the False Negatives (FNs). 

In our system the number of False Negatives (FNs) represents the number of false predictions 

about disabling VC mode. The low recall of the classifier indicates that the classifier disables the 

VC mode when it is actually needed, resulting in degradation of the quality of signal received by 

a node.   
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Total	recall = 	b

TP
TP + FN

z

{jk

%	 = 89.71	%, 
(4.10) 

C. Accuracy 

This performance measure is defined as the ratio of decisions made by the correct 

predictions of enabling /disabling the VC mode to the total number of decisions. 

 
Accuracy = 	b

TP + TN
TP + FP + FN + TN

z

{jk

	% = 	92.80	%, 

 

(4.11) 

The proposed machine learning algorithm addresses the problem of automated proactive 

mobility management in 5G virtual cell networks. This is a promising approach to achieving the 

goal of providing a uniform user quality of experience everywhere in the network via dynamic 

formation of VCs. Moreover, considering the very low-latency requirements of next-generation 

5G networks, the proposed algorithm assists the mobility management function to rapidly create 

VC formation. As shown in Equation (4.11), an accuracy of 92.90 was achieved indicating that 

the proposed algorithm can detect patterns in arbitrary-length of RSS sequences to make accurate 

prediction on whether to enable or disable the virtual cell mode and also which BS the user should 

be associated with in the future.  
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CHAPTER 5: TOWARDS LOW LATENCY IN 5G HETNETS: A BAYESIAN CELL 

SELECTION / USER ASSOCIATION APPROACH1 

5.1. Introduction 

Among 5G’s headline features are expanding the cellular ecosystem to support an immense 

number of connected devices and creating a platform that accommodates a wide range of emerging 

services of different traffic types and Quality of Service (QoS) metrics. One of the key 5G 

performance metrics is ultra-low latency (~1ms) to enable new delay-sensitive use cases. Some 

network architectural changes have been proposed to facilitate the 5G ultra-low latency objective 

[19], [20], [65]. With these paradigm shifts in system architecture, it is of cardinal importance to 

rethink the cell selection / user association process to achieve substantial improvement in system 

performance over conventional maximum Signal-to-Interference plus Noise Ratio (Max-SINR) 

[50] and Cell Range Expansion (CRE) algorithms [51]. In this chapter we present a novel cell 

selection / user association approach that is directed towards 5G Heterogenous Networks (HetNet) 

to achieve the ambitious 5G low latency objective [28].  

5.2. System Model 

We consider a simplified two-tier Heterogeneous Network (HetNet) consisting of one High 

Power Node (HPN) overlaid by several Fog-Low Power Nodes (F-LPNs) with caching and 

computation capabilities as shown in Figure 5.1. The set of all radio Access Nodes (ANs) in the 

                                                        
1 This chapter is an enhanced version of  

1- M. Elkourdi, A. Mazin and R. D. Gitlin, "Towards Low Latency in 5G HetNets: A Bayesian Cell Selection 
/ User Association Approach," IEEE 5G World Forum (5GWF'18) July 9-11, 2018 in Santa Clara, CA, USA. 
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HetNet is defined as ! = {$%, $', $(, … , $*}, where $% represents the HPN and the subset , =

{$', $(, $-, … , $*} denotes the F-LPNs. The F-LPNs are randomly distributed in the service area 

with spatial density of . (F-LPNs/km2). The set of all User Equipment (UE) under the coverage 

area of the two-tier HetNet is denoted by / = {0%, 0', 0(, … , 01}. Each UE 2	 ∈ 	/ requests a 

service class defined as the tuple 56 	= 	 (86, 96), where 86, 96 are the UE 2 required data rate and 

latency respectively. Hence, the UE’s traffic in the proposed system model, can be mainly 

classified as delay-sensitive (DS) or delay-tolerant (DT) according to their latency requirement τ.  

The signal to interference plus noise ratio (SINR) at UE 2, associated with access node 

$	 ∈ 	!	whose transmitting in downlink on the resource block <, is expressed as 

 
=>6? =

ℎ>6A>6?

∑ ℎ>6A>6?>∈CD/{>} +G!%
, 

(5.1) 

where A>6?  The achievable downlink data rate at the UE 2 from AN n is defined as the transmitted 

power from access node $	to UE 2 on resource block <	 ∈ 	H, H is the total number of resource 

blocks (RBs), G is the bandwidth of each HI, !% is the thermal noise spectral power, 

∑$ ∈ C?/{$}   are the access nodes which are using the resource block < and causing interference 

on the UE 2 associated with the access node $, and ℎ>6  is the channel between access node $ and 

the UE 2. The channel model incorporates the effects of small- scale fading and large-scale fading 

(the latter includes path loss and shadowing). The achievable downlink data rate at the UE 2 from 

the AN (access node) $ on single resource block < is given by  

 H>6? = G JKL((1 +	=>6? ).						 (5.2) 
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Figure 5.1. Two-tier 5G HetNet consisting of a radio access controller (RAC), high-power node 
(HPN) and fog-low power nodes (F-LPNs).  
 
Hence, the total achieved data rate from all the access nodes associated with UE 2 can be written 

as  

 ℝ6 = 	P Q6>
>∈C

PR>6?

?∈ℛ

H>6? , (5.3) 

where Q6> ∈ {0,1} and R>6	? ∈ {0,1} are the user association and the resource allocation control 

variables respectively.  

To meet the data rate requirement, at any time instant	U, we assume that the UE 2 can be 

associated with ! access nodes	$ ∈ C, which is referred to as Coordinated Multipoint (CoMP) 

transmission [66]. 

 P Q6> ≤ W,							
>∈C

 (5.4) 

Thus, the AN $ serves the UE 2 if the minimum data rate requirement in the service class tuple is 

GBR (Guaranteed Bit Rate), otherwise the UE will be severed by multiple ANs (CoMP 

transmission). Hence, we can write  
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 ℝ6 = 	P Q6>
>∈C

P R>6?
?∈ℛ

H>6? ≥ 86, (5.5) 

The access nodes assign the needed resource blocks to UE 2 to satisfy Equation (5.5). The number 

of resource blocks is given by  

 
Γ = 	P P R>6?

?∈ℛ
= Z

86
H>6?

[
>∈C

, 
(5.6) 

where ⌈∙⌉ is the ceiling function. Similarly, to meet the primary delay requirement 96	of UE	2  

 1
Δ>6

≤ 96, 
(5.7) 

where	Δ>6 is the inverse of the average Round-Trip delay-Time2 (RTT) from access node $ to UE 

2. As mentioned previously, the F-LPNs are fitted with caching and computation capabilities that 

are brought close to the network edge. Therefore, the average RTT of the F-LPN is assumed to be 

much smaller than the average RTT of the HPN	∆>6abc*> ∆>6ec*[67]. 

5.3. Problem Formulation and Proposed Bayesian Game Approach  

A. Problem Formulation 

In this subsection, the problem of proper cell selection / user association is formulated. The 

utility functions are defined to represent the network’s resource utilization and the UE’s degree of 

satisfaction with the Quality of Service (QoS) including latency. The aim is to maximize the UE’s 

utility function for improved QoS satisfaction and the network’s resource utilization with respect 

to its preferences. Therefore, the UE and the network utility functions, are respectively written as 

 	/6fg(Q, R) =P Q6>P R>6?
?∈ℛ>∈C

H>6? − iΔ>6, (5.8) 

                                                        
2 The time required by a processor to serve a request is not included. It is assumed that with the advancement in 
computing powers and by aggregating multiple CPUs in a central unit, the processing latency can be neglected 
compared to the other latency components. 
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/>*jk = l>(m6) Z

	Γ>
∑ α6>ℕ>>∈C

[,		 
(5.9) 

where ℕ> is the total number of available resources for access node $ and l>(m6) is representing 

the AN $ preferences for UE k traffic type m6 .The objective of the UE is to maximize (5.8) as 

 max	
s,t

: /6fg(Q, R), (5.10) 

 subject	to ∶ (5.4), (5.5), (5.6), (5.7).							  

Similarly, the objective of the network is to maximize (5.9) as  

 max	
É
: />*jk, (5.11) 

 subject	to	: Q6>, 	R>6? , 86 < Ö,								  

where Ö is the cap on the data rate allowed for UE 2 by access node $. We modeled the cell 

selection/ user association problem as a Bayesian Game3 [68]. The motivation for selecting a 

Bayesian game to model for this problem is as follows. As previously mentioned, some of the 

proposed solutions such as the densification in deploying small cells and bringing the content 

closer to the user, are designed to accommodate the expected increase in data rates and to lower 

the end-to-end latency for certain type of applications. However, achieving the optimum system 

performance may not be feasible by just applying those solutions due to the a priori unawareness 

of access nodes to the UE’s type of traffic. Furthermore, assuming that the radio access nodes 

know the exact type of the user’s traffic is unrealistic since this take considerable time and makes 

achieving low latency quite unlikely. Hence, selecting a Bayesian game to model this problem, 

                                                        

3 The proposed cell selection / user association Bayesian Game algorithm is implemented in a central unit hypervisor 
referred to as the Radio Access Controller (RAC) which manages multiple access nodes.  
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where perfect knowledge about UE’s traffic types is not available at the access node, is well 

justified. 

B. Proposed Bayesian Game Approach 

The cell selection/ user association Bayesian game is defined in the strategic form as	Ü =

	(á, i,à, â, /), where: 

• Players(á): Set of two players	á = {06, $>}: the UE 2 and the AN $, respectively. 

• Types(i): Set of possible types for a UE 2 according to its traffic m = {m6,' = äã, m6,( =

äå}, where m6,ç is the type é for the UE 2.   

• Actions (à): The space of all possible combinational actions	à = à' ×à(. Where, the 

UE’s action space  à' = 	 {ê = /ë	íìJìîUí	êA!, , = 	/ë	íìJìîUí	,A!} and the AN’s action 

space	à( = 	 {ã = íì<ïì, ñ = CoMP}.   

• Prior Probabilities (â): The probability â (mç) over the types of users.  

• Utility functions (/): The UE and the network utility functions as defined in (5.8) and (5.9), 

respectively.  

The player		ö’s strategy is mapping	íõ: iõ → 	àõ, which represents the player	ö’s action for 

each possible type. In our Bayesian model, we started with a prior probability distribution over the 

UE types which is assumed to be common knowledge at the ANs. However, a given AN only 

knows its type and strategy, and does not know the strategies selected by the UE or its actual type. 

The expected utility of a player ö under strategy profile ù is 

 û[/õ] =P /õ(í°iç¢, iç)
£§∈£

	â°mç¢, (5.12) 

Hence, the expected utility (payoff) of UE 2 is 



www.manaraa.com

 59 

 û[/6fg] = 	â°mç¢ •P Q6>P R>6? H>6?
?∈ℛ>∈C

− i¶>6ß 

+®1 − â°mç¢© •P Q6>P R>6?
?∈ℛ>∈C

H>6? − iΔ>6ß, 

(5.13) 

Similarly, the expected utility (payoff) of network is 

 
û[/>*jk] = 	â°mç¢ ™l Z

	Γ>
∑ α6>ℕ>>∈C

[´ 

+	®1 − â°mç¢© ™l Z
	Γ>

∑ α6>ℕ>>∈C
[´, 

(5.14) 

The UE 2 is of type	m6,', when /6fg(,, ã) > /6fg(ê, ã) and	/6fg(,, ñ) > /6fg(ê, ñ). 

Consequently, the L strategy strictly dominates the H strategy. On the other hand, the UE is of 

type	m6,(, when /6fg(ê, ã) > /6fg(,, ã) and	/6fg(ê, ñ) > /6fg(,, ñ). Then, the H strategy strictly 

dominates the L strategy. Starting with an unbiased belief (a prior probability) about the types of 

the UEs, then the expected utility (payoff) of the dominant strategies4 for both traffic types  is 

assumed to be even (at the beginning the network is not biased in its choice for any type of users). 

Hence, using Table 5.1, the posterior probability A can be calculated as in Equation (5.15).  

 

A = 	
¨ 	Γ>
∑ α6>ℕ>>∈C

≠ − l( Z
	Γ>Æ

α6
>Æℕ>Æ

[

l' Z
	ΓC\>Æ

α6
C\>Æℕ>

[ − l( Z
	Γ>Æ

α6
>Æℕ>Æ

[ − ¨ 	Γ>
∑ α6>ℕ>>∈C\>Æ

≠ + ¨ 	Γ>
∑ α6>ℕ>>∈C

≠
 

(5.15) 

 

 

 

 

 
                                                        
4 In game theory, player i's strategy is called a dominate strategy if it has a payoff higher than all other strategies’ 
payoffs 		/õ∗ > /õ

ç, regardless of the other players’ actions.    
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Table 5.1. Payoff matrix. 

 
5.4. Simulation Results and Analysis 

In this section, we present the simulation setup and discuss the performance results of the 

proposed Bayesian cell selection / user association algorithm. The performance of the proposed 

Bayesian cell selection approach is evaluated in terms of the probability of proper association and 

the achieved latency with respect to conventional CRE and Max-SINR based cell selection / user 

association algorithms used in LTE-Advanced [50]. In the simulation, proper association is defined 

as the average number of delay-sensitive and delay-tolerant traffic associated with LPNS and HPN, 

respectively.  

The simulation parameters are presented in Table 5.2. In the simulation setup, we assume 

that there is one HPN and F-LPNs that are randomly deployed over the service region. The UEs 

are randomly distributed following a homogeneous PPP and each UE could be one of the two types 

DS or DT. The DT and DS applications traffic demands are modeled as a uniform random variable 

on [5,10] Mbps and [0.1,4] Mbps, respectively. The path loss is based on TS 36.942 model [69], 

for an urban environment as  

Delay Sensitive (DS) Delay Tolerant (DT) 

p 1-p 

UE 

Connect 

to 

Network Network 

S C S C 

H 
(/6fg(ê, ã), 

/>*jk) 
(/6fg(ê, ñ), />*jk) (/6fg(ê, ã), />*jk) (/6fg(ê, ñ), />*jk) 

L (/6fg(,, ã), />*jk) (/6fg(,, ñ), />*jk) (/6fg(,, ã), />*jk) (/6fg(,, ñ), />*jk) 
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 A, = 40(1 − 4 × 10±-ℎ≤) log'% µ − 18 log'%(ℎ≤) + 21 log'%(∏)

+ 80	µπ, 

(5.16) 

where µ is the separation between the UE and the AN, ℎ≤ the height of the AN antenna and the 

∏	is the carrier frequency. The shadow fading is lognormal distributed, and the fast fading is based 

on the Winner II model [70]. In simulation, the average RTT for the F-LPN (1/∆F-LPN) is modeled 

as a uniform random variable on [0.5,1.5] ms and for HPN (1/∆HPN) as the sum of three uniform 

random variables, namely: radio access [0.5,1.5] ms, the core network [1,2] ms and [5,10] ms for 

the Internet.  

Table 5.2. Simulation parameters. 

 

 

 

 

 

 

 

 

 

After performing simulations, we used the CCDF of achieved latencies of the delay-

sensitive traffic to evaluate the Bayesian game in comparison with the Max-SINR approach. As 

shown in Figure 5.2, the minimum achieved latency using the SINR approach is ≈ 6.8 ms due to 

the improper association that happens when delay-sensitive traffic is associated with HPN using 

the max-SINR criterion, while significantly the Bayesian approach achieves latencies < 1 ms.  

Parameter Value 

Service area 400 m × 400 m 

Number of ANs (C = $% ∪ 	ℒ) 10 = 1+9 

Number of UEs per AN 40 

Total transmit power of ANs {46.02,40} dBm 

Transmit antenna height of ANs (hb) 20 m 

Carrier frequency (∏) 2.14 GHz 

Bandwidth 20 MHz 
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Figure 5.2. CCDFs of achieved latency for delay-sensitive traffic.  
 

In addition to latency, we study the proper association of different schemes. Where the 

proper association refers to when the delay-sensitive traffic is associated with Fog-Low Power 

Nodes (F-LPNs) and the delay-tolerant traffic is associated with High Power Node (HPN). Figure 

5.3 illustrates the cumulative distribution functions (CDFs) of proper associations for the proposed 

Bayesian game compared with the CRE and Max-SINR approaches. It is noted from Figure 5.3 

that the minimum percentage of proper associations for the delay-sensitive traffic of the Bayesian 

approach is greater than or equal to 82%, which outperforms the proper association of the 

conventional Max- SINR and the CRE approaches. Similarly, using the CDF of the delay-tolerant 

traffic as illustrated in Figure 5.4, we observed that the CRE and Max-SINR approaches are 

inferior to the Bayesian game approach. The Bayesian game approach attains a proper association 

greater than or equal to 80% for delay-tolerant traffic.  
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Figure 5.3. CDFs of proper association for delay-sensitive traffic  
                     

 
Figure 5.4. CDFs of proper association for delay-tolerant traffic.  
 

In this chapter, a novel method based on Bayesian games for cell selection/ user association 

in 5G heterogeneous networks was presented. Such a methodology can be quite important in 

achieving the 5G low latency objective of 1ms. As illustrated in Section 5.3, simulation results 

demonstrate that the proposed Bayesian game algorithm provides a significant improvement in 
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terms of the probability of proper association (as a function of traffic type) and the achieved latency 

compared with the Maximum Signal-to-Interference-plus-Noise Ratio (Max-SINR) criterion and 

Cell Range Expansion (CRE) approaches, that do not use delay as a metric. Simulation results 

show that Bayesian game approach attains the 5G low end-to-end latency target with a probability 

exceeding 80%.  
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CHAPTER 6: CONCLUSIONS  

The main contributions in this dissertation can be summarized as below: 

6.1. Slotted ALOHA Non-Orthogonal Multiple Access (SAN) Protocol for IoT Networks 

This work is directed towards a novel Medium Access Control (MAC) layer protocol that 

is easy to implement, energy efficient, scalable and compatible with the low complexity 

requirements of IoT devices. The synergistic combination of the Slotted ALOHA (SA) protocol 

with NOMA and a Successive Interference Cancellation (SIC) receiver was demonstrated to 

significantly improve the throughput performance with respect to the SA protocol. 

This methodology enables the use of the SAN protocol by providing the IoT gateway a 

means to determine the number of active IoT devices in the medium. Knowing the number of 

active IoT devices is essential in order to optimize the SIC power levels and the ability to 

distinguish between signals from different IoT devices transmitting at the same time and on the 

same frequency. In the case of massive number of active IoT devices the power levels become 

high, whereas the IoT devices usually have a limited power capability. Therefore, with this 

technology the number of active devices that can achieve a successful transmission using SIC is 

limited to keep the power levels modest. It was shown that with correct detection, there is a 

substantial throughput gain of 5.5 dB relative to SA for 0.07 probability of transmission and up to 

3 active transmitters.  

Next, as a further enhancement to SAN protocol the merit of Multiple-Input Multiple-

Output Beamforming (MIMO-BF) was studied as a mechanism for reducing collisions, It was 
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shown that the addition of beamforming to the SAN protocol, dubbed BF-SAN, demonstrates a 

significant improvement in throughput for a large number of IoT devices, compared with 

conventional Slotted ALOHA (SA) and SAN protocols, through the exploitation of power and 

spatial domains without excessively increasing the SIC power levels which is impractical when 

using power-limited IoT devices.  

Also, BF-SAN addresses the SAN channel access delay problem by reducing the 

probability of collision and consequently lowering the average back-off delay when beamforming 

is employed. Simulation results have shown that BF-SAN can achieve higher throughput than the 

SAN protocol with fewer attempts and consequently a lower channel access delay. Such a random-

access protocol can be quite important for massive M2M communication in IoT networks.  

6.2. Recurrent Neural Networks for Proactive Mobility Management in 5G Virtual-Cell 

Networks 

A deep machine learning (ML) algorithm for proactive mobility management in 5G 

wireless networks was proposed and evaluated in a particular scenario. Using ML to proactively 

predicting the triggering conditions to enable/disable Coordinated Multipoint (CoMP) 

transmission and Virtual-Cell (VC) selection was investigated. A Recurrent Neural Network 

(RNN) based on a Gated Recurrent Unit (GRU) mechanism was applied to eight element feature 

vectors of the Received Signal Strength (RSS) values from all the eight BSs in the network to 

make an accurate prediction about the RSS values in the future. Simulation results have shown 

that the proposed GRU-RNN model achieves an accuracy of 92.80 % to predict the triggering 

conditions for enabling and disabling the Virtual-Cell (VC) mode as required based on the mobility 

of users. As mentioned earlier, using the Virtual-Cell (VC) mode can help attaining a uniform user 

experience for mobile users by improving the throughput of cell-edge users and minimizing the 
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number of hard handovers. However, to enable the formation of VCs, for instance in downlink 

(DL), the User-Equipment (UE) data must always be available to the BSs in the CoMP cooperating 

set, hence, this leads to a substantial cooperation cost due to the exchange of data and the control 

information among the cooperating BSs. On the other hand, waiting for CoMP transmission to be 

enabled can lead to a degradation in throughput since the time required to form VCs is severely 

time constrained. Simulation results have shown that the virtual-cell mode was enabled 14 times 

during the duration of time that nodes spend within the network, with a probability approximately 

of 0.95, instead of relying on static virtual cells. 

 The proposed algorithm is a promising approach to achieving the goal of providing a 

uniform user experience everywhere in the network via dynamic formation of VCs. Moreover, 

considering the very low-latency requirements of next-generation 5G networks, the proposed 

algorithm helps the mobility management function facilitate VC formations. 

6.3. Bayesian Game Approach for Cell Selection / User Association in 5G HetNet 

As discussed in CHAPTER 1 and CHAPTER 5, the three solutions proposed for 5G to 

meet the low latency and high data rate requirements of 5G, namely: Dense LPNs, F-RANs and 

CoMP, are not sufficient in themselves to meet the diverse requirements for a wide range of 

emerging applications and in particular the low-latency target. For this reason, it is essential to 

rethink the traditional cell selection/ user association procedures, by considering both the traffic 

type and the access node capabilities. A novel method for cell selection/ user association for 5G 

heterogeneous networks was proposed using a Bayesian game model. The utility functions of the 

user equipment and the network are defined based on the achievable data rate, the average Round-

Trip-Time (RTT), and the access node’s traffic preferences. Simulation results demonstrate that 

the proposed Bayesian game algorithm provides a significant improvement in terms of the 
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probability of proper association (as a function of traffic type) and the achieved latency compared 

with Max-SINR criterion and Cell Range Expansion (CRE) approach. It was shown that the 

Bayesian game approach attains a proper association greater than or equal to 80% of the time for 

delay-tolerant traffic. Such a methodology can be quite useful for achieving the 5G low latency 

objective.  
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